TRANSFORMATION OF NAVIER-STOKES EQUATIONS IN GENERALIZED COORDINATES WITH ALGEBRIC COMPUTER LANGUAGE (REDUCE)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Navier - Stokes Equations for Generalized

Tsallis has proposed a generalization of Boltzmann-Gibbs thermostatistics by introducing a family of generalized nonextensive entropy functionals with a single parameter q. These reduce to the extensive Boltzmann-Gibbs form for q = 1, but a remarkable number of statistical and thermodynamic properties have been shown to be q-invariant { that is, valid for any q. In this paper, we address the qu...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Investigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations

In this article, the instable fluid velocity in the pipes with internal nanofluid is studied. The fluid is mixed by SiO2, AL2O3, CuO and TiO2 nanoparticles in which the equivalent characteristic of nanofluid is calculated by rule of mixture. The force induced by the nanofluid is assumed in radial direction and is obtained by Navier-Stokes equation considering viscosity of nanofluid. The displac...

متن کامل

The Generalized Incompressible Navier-Stokes Equations in Besov Spaces

This paper is concerned with global solutions of the generalized Navier-Stokes equations. The generalized Navier-Stokes equations here refer to the equations obtained by replacing the Laplacian in the Navier-Stokes equations by the more general operator (−∆) with α > 0. It has previously been shown that any classical solution of the d-dimensional generalized NavierStokes equations with α ≥ 1 2 ...

متن کامل

Boundary Layer Analysis of the Navier-stokes Equations with Generalized Navier Boundary Conditions

We study the weak boundary layer phenomenon of the Navier-Stokes equations with generalized Navier friction boundary conditions, u ·n = 0, [S(u)n] tan +Au = 0, in a bounded domain in R when the viscosity, ε > 0, is small. Here, S(u) is the symmetric gradient of the velocity, u, and A is a type (1, 1) tensor on the boundary. When A = αI we obtain Navier boundary conditions, and when A is the sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Doboku Gakkai Ronbunshu

سال: 1991

ISSN: 0289-7806,1882-7187

DOI: 10.2208/jscej.1991.434_77